

УНИВЕРЗИТЕТ У НОВОМ САДУ UNIVERSITY OF NOVI SAD

TOP ACHIEVEMENTS 2022

INSTITUTE OF FOOD TECHNOLOGY

Rošul, M., Đerić, N., Mišan, A., Pojić, M., Šimurina, O., Halimi, C., Nowicki, M., Cvetković, B., Mandić, A., Reboul, E. (2022). Bioaccessibility and uptake by Caco-2 cells of carotenoids from cereal-based products enriched with butternut squash (Cucurbita moschata L.), Food Chemistry, 385, 132595.

Food Chemistry

Milana (Rošul) Matić

Enriching cereals-based products with bioactive compounds is a valuable strategy to improve product quality. We studied carotenoid bioaccessibility and intestinal uptake from a pumpkin-enriched porridge, cookies and sponge cakes by using in vitro digestion coupled with Caco-2 cell uptake. Among the carotenoids recovered in different products, α -carotene was the most important abundant one. However, lutein displayed a significantly higher bioaccessibility compared to α -carotene and β -carotene in baked products (up to 10.28% compared to 1.22% and 0.88%, respectively). α -Carotene was the only carotenoid recovered in Caco-2 cells after micelle incubation. Cookie micelles led to the highest percentage of α -carotene cell uptake (2.33% and 1.38% for cookies with butter and cookies with vegetable oil, respectively) compared to the other baked products, followed by dry pumpkin puree micelles (1.31%). Overall, our data show that both bioaccessibility and cell uptake of carotenoids from cereal-based products are variable and highly depend on food formulation and structure.

